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ABSTRACYT

Single bubble dynamics arc investigated using acoustic techiniques for isolation and manipulation.
The goal of the investigations is to understand the dynamic origin of the various phenomena that
bubbles exhibit: light emission, enhanced mass transport, chaotic and quasi periodic oscillations and
tranglations. Once understood, acoustically manipulated bubbles can serve as platforms for materials
cffects 011 free surfaces, using surfactants to alter surface rheology and observing how that affects
both dynamics and also mass transport. The effects of gravity on the problem will be shown to bc
significant, The first set of obscrvations from 1g experimentation arc prescented. These observations
arc of the onset conditions for instability of the spherical shape of the bubble. Yor the size range 55 -
90 microns in diamcter wc observe instability governed by rcsonant mode coupling, which is
significantly affccted by the buoyant force and its effects.

INTRODUCTION

A bubble is a laboratory for the study of a surprising variety of physics problems. Hcat
transport [ 1], mass transport [2], surfactant effects [3], shock waves [4], chaos [5], free surface
instability [6], and even elcctromagnetic radiation [7] arc al phenomena associated with the highly
nonlincar oscillations of air bubbles in water. Itisimpossible, however, to separate the study of any
of these phecnomena from the fundamental mechanics of the bubble wall’s oscillation, coupled to the
thermodynamics of the interior. Thusit is crucial to make detailed observations of bubble mechanics
in concert with other investigations of material or transporl propertics.

Many areas of scicnce and tcchnology depend on bubble dynamics. in the field of
biomedical ultrasound, many of the effects studied in the ultrasound community (such as enhanced
ccl] lysis, sonochemical reactions, ultrasonic cleaning, etc. ) depend on the mechanical response of a
bubble to a sound ficld.In the field of surface rhcology, knowing the mechanical response of
bubbles lets us usc them astoolsto probe the effects of surface active agents, much as drops are
currently being used {81.1n addition to being a closed, isolated interface, onc of the major reasons a
bubble Is used in these contexts is that a bubblc can produce both pure dilatational, shear, and a
combination of dilatational and shecar interfacial motions. Mass transport research on the effect of
surfactants on the diffusion of gas across the air water interface [Fyrillas and Szeriin 3] also relics On
dctailed bubble mechanics, and will eventually lead to understanding the fundamentals of air-sea
mass transfer. Ambient noise in the ocean (which has bcenshown to be largely duc to volume
oscillations of bubbles near the sca surface [9]) has been conjectured to depend on preciscly the
nonlincar shape/volun~c mode energy transfer for which we present results in this paper [ 10].

In the microgravity environment, bubbles arcimportant for two reasons. The first is that
bubbles cxperience a buoyant force duc to gravity, and the justification for microgravity
experimentation is simply the removal of the buoyant force and its cffects. Static deformation of the

uilibrium shape changes the very rature of the coupling between volume and shape mode(s)
which wc will show is the primary instability for a bubble [ 11]. AsWC]], trandator oscillations of the
bubble guarantec that the onset of shape oscillations in 1 ¢ will occur atrelatively low pressure valucs,
mak]ing impossible the observation of the predicted volume-oscillation bifurcation superstructure
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ngbles arc best studiedin isolation, without contact and contamination from containers, and
then non-invasively manipulated. Perhaps the mostcffective scheme is that of acoustic Ievitation,
where the nonlinear acoustic radiation force balances thc buoyant force inlg, and merely positions at




pressure maximum in0g. On the practical side, however, measurements cm bubbles in 1 gare
compromised because positiouing is coupled o driving fore.c, and nonlinear cffects such as sclf-
oscillation and streaming occur due tothe coupling (via the necessarily high-amplitude acoustic
field) of the volume and translational modes. Deccoupling driving from positioning is impossible in
1g.

Secondly, apart from bubbles being the subjects of microgravity research themselves, bubbles
occur in fluids in space, and their appearance is fraught with problems, not least of which is how to
get rid of them!  Fluids experiments (IDrop Physics Module, Zeolite Crystal Growth, Oscillatory
Thermocapillary Flow, Generic Bioprocessing Apparatus) on both the S'1"S-50 and S7’'S-73 missions
have often developed bubbles whose presence and dynamics affected what was being measured.
Most proposed schemes for elimination of unwanted bubbles (acoustic, thermocapillary,
clectrophoretic) depend on dynamics of bubbles for their efficacy. Once again understanding
bubble mechanics is seen as fundamental to a host of practical problems.

We present herc the results from the first phase of our planncd experimentation: the
investigation of the onset of non-spherical oscillations of the shape of the bubble. These FFaraday
shape oscillations form a natural boundary in the paramcter space of bubble dynamics, since
cxperimentation on spherical bubbles can occur only at pressures and radii below the critical values.
Above the threshold, the amplitude of these shape oscillations can rapidly grow, and lead to breakup
of the bubble. Wc will limit ourselves to a brief descriptive background of the problem, followed by
an experiment description and results.

BACKGROUND>: “1'111; SHAPE OSCILILATION PROBLEM

A gas/vapor bubble in water is a highly nonlinear systein. This is most readily seen when the
bubble is subject to an external forcing, such as is the casc when atime-varying acoustic ficld is
imposed. Supposc that the acoustic wavelength is much larger than the bubble radius kg (kg smal,
where &, isthe acoustic wavenumber in water).  During a compression phase of the ficld, the bubble,
since it is highly compressible, will contract, accelerating inward.  The pressure and temperature will
increase. Eventually, the contraction halts, reverses, and the bubble begins expanding. During the

expansion phase of the external field, the bubble expands, cooling and reducing the pressure in its
interior.

This oversimplified picture gives us atlcast a qualitative insightinto the motion. The
nonlincar restoring force is largely thermodynamic during collapse (due to the increascd interior
pressure) and expansion, since equilibrium implics a static pressure stress balance across the bubble
wall. The nonlinear damping is due to thermal, bulk viscous and sound radiation mechanisms in the
case of a pure liquid, and additionally duc to surface viscosity for liquids with surfactants. For a
fixed cquilibrium radius Ry, the bubble will exhibit a fundamental lincar resonance frequency fp.
Yoran air bubble in water of radius R0 = 64 microns, /0 -50 k}liz at atmospheric pressure.

Consideration of the spherically symmetric problem yields predictions of highly nonlincar
dynamics as the acoustic pressure g isincreascd.  Numcrical integration of the equation of motion
for a driven, spherical bubble predicts the resonant creation of periodic (and via standard period-
doubling bifurcations chaotic) familics of solutions via resonant saddle-node bifurcations. The
Farcy ordering [ 12] of the rcsonant saddle-node bifurcations imposes a recurrent superstructure
which controls the appearance of period-dollb]irlg bifurcationsto chaos. Onc of the goals of this
rescarch isto observe this behavior, or determine why it is not observed.

Under what conditions will spherical symmectry become unstable, and further under what
conditions will this instability lead to observable distortions of the shapc and eventual breakup of the
bubble? ‘]’here arc two candidate instabilities: Rayleigh-Taylor (RT, [13]), and parametric or
Faraday (FF,[ 14]). It can be shown that, during at lcast some part of its motion, a bubble is RT
unstable. RT instability occurs for accelerated interfaces when density and pressure gradients across
the interface arc opposed. RT occurson afasttime scale, and is thus likely to be violent in its effects
011 the bubble surface if conditions alow it to develop. At first glance, RT appecars very likely to
destroy a bubble at its first collapse.




F, in contrast, requires a resonant interaction for the necessary cnergy cxchange. A free
liquid surface, when vibrated periodically and normnaito its surface plane, will exhibit Faraday waves
with half the driving frequency when the excitation overcomes the damping [ 15]. In additionto
requiring a finite threshold excitation, sufficient time is require.d for the coupling 10 occur, typically 2
or more cycles of the periodic excitation. Finally, since a bubble is a closed surface whose
circumfcrence is of the same order as the capillary wavelength, the encrgy must excite a normal mode
of the bubble, constrained by a resonance condition similar tothe classic fshape ; fvolume.1/'2, and
consideration must be given to the damping of the normal modes. Theoretical treatments of this
problem [Strube, Eller and Crumin 6] predict that such instabilitics will occur near the (P4 Kp)
values where the interesting spherical dynamics occurs, Thus, we want to resolve the issue of the
dynamical behavior of bubbles over a wide range of paramecter space (7, %0): what behaviors obtain,
and why?

EXPERIMENT
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1gure 1: Schematic of setup for acoustically levitating and imaging bubbles in water

Air bubbles initiated via electrolysis arc acoustically levitated in water in the f; = 20.6 kliz standing
wave ficld of a cylindrical resonance cell asillustrated in Fig. 1 [ 16]. The acoustic pressure P, at the
antinode is obtained from a custom hydrophone mounted near the z antinode and 1 cm away from
the side wall inside the ccll. The hydrophone is calibrated by balancing the buoyant force with the
acoustic force for a variety of bubble sizes and positions along the z axis pressure gradient, always
using small amplitude oscillations. For calibration purposes, Rgye (= Rpfor a linearly oscillating
bubble) is measured directly by mecasuring the locations of the peaks encouutcred by sweeping a
detector from 207 to 90° in the polariz.ation—)olane forward scattering of’ anincident linearly polarized
He-Ne beam using Mic. theory [ 17). Kg, Kmax and R,y arc obtained from single frame video
images illuminated at 1 pulse per frame (maximum 1 ms pulse width); X0 in particular is obtained
by turning the sound ficld off instantancously when the bubble is inthc focal plane of theimaging
system. R(t)is obtained from a PMT locate.d at 80° from the forward [ 18]. Corroborating ()
information is obtained from a fast photodiode ditcctly in the forward di ffraction lobe of the bubble.
Distilled, de-ionized, carbon and particulate filtered water was used for all mecasurements, Dissolved
gas concentrations less than saturation were obtained by allowing the water to equilibrale at a reduced
pressure.




The practical kcy 1o performing the mcasurements WC report here is the slowing of the mass
transport time scale within two pressure constraints: our lowest obtainable pressures arc bounded by
the minimum trapping pressure, while the highest obtainable. pressures (for a given Rp) arc bounded
by the threshold for Faraday shape oscillations and breakup of the bubble. Within these bounds, for
afixed P, and dissolved gas concentration, the system will sel f-select onc (or very few) bubble size
R* which will be in dynamic mass equilibrium. By varying the dissolved gas concentration wc can
cause that siz¢ range to span the entire space from 1to 100 microns. Wc can vary P4 near R* where
dRg ! dt is small, and observe the onset of shape oscillations quasistatically.

RESULTS

At low !’,, the bubble remains spherical, and c¢xhibits the weak nonlinear trait of harmonic
generation| 16], with the response remaining periodic with the same period 75 as the acoustic field.
Figurc 2a shows the measured P, and R as functions of time; note the strong 2nd harmonic
component. The bubble inFigure 2 had an cquilibrium size of 66 microns, and a linear resonance
frequency of 48 kHz, very nearly twice the acoustic frequency fu.  The pattern repeats itself for
smaller bubbles as their linear resonance frequency nears an integer multiple of fz. g'bus, we observe
the prc-saddle-node harmonic resonance predicied by theory. Mowever, al the spherically symmetric
oscillations wc have observed have been strictly periodic with period 7's, and remain below the
amplitudes required for the saddle-node bifurcation predicted. What prevents this bifurcation?
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Figurc 2. Response of a 66 micron radius bubbletoan acoustic pressurcof ().24 bar at 20.6
kHz. @) from top to bottom: the pressure vstime (arbitrary units) from the
hydrophone; normalized radius vs time from the 8§0° PMT scattered light; and FE1 of
the radius. b) The samc data at 0.25 bar, just aftcrthc onset of a mode 5 shape
oscillation. The signature of the shape oscillation is the peak at /{0 =-1/2.




Our observations show that, for all acoustic pressures #,; below 1.3 bar for air bubbles in
water, the instability which develops firstis the Faraday instability. The signature of this instability is
often a period-doubling of the scattered laser signal, as shown in Fig.2b for a 66 micron bubble
driven just past the onset of the S-lobed mode, identified by video image analysis.  Figure 3 shows a
subset of the measured (7’4 X0) values for onset of an oscillation of the shape of the bubble, and thus
the l0ss of spherical stability. The observed modes arc indicated by the symbol type. Notice also the
set of theoretical curves for onsct of the different modal oscillations: wc will discuss these in the next
scction. We concentrate on understanding the experimental data in simple terms in ibis section.
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Figure 3: Measured threshold acoustic pressure P’aand cquilibriumradius RO for

onset of’ shape oscillations (I‘araday instability: modc obscrved given by
symbol). All datapresented arc for air bubble.s levitated in pure water
driven at 20.6 kHz at 22° C atambicnt pressure of 1 bar, The theoretical
thresholds and modes presented for comparison arc courtesy of M.
Brenner, calculated using the algorithm presented in [6].

The general trend of higher threshold at smaller bubble size (averaged over different modes) is just
the stabilizing cffect of the curvature 7/R. Most of the dips and peaks, and the presence and location
of specific normal modes can be understood in terms of resonances. A particular shape modenisin
external resonance tothe driving ficld (via the forced Jton-resonant responscof the volume mode)
when i,/ fg -1 12,1 =1,23,..., and wc speak Of i:2 external resonance. A shape mode #isin internal
resonance with the resonating volume mode when f, / fp - j / 2, j = 1,2,3,..., hence j:2 internal
resonance . Understanding that the energy transfer mechanisin is the. Faraday instability is the reason
for the factor of 2 in the denominator. The locations in (g, Rp) space w'here i and | arcintegers arc
notin general coincident, For bubbles in the range presented here, either resonance is equally likely;
for very small bubbles, only internal resonance is possible at k} 1z frequencics. Note that, though we
usc the classification ‘shape. modes in cxternalresonance with the driving field’, the field dots not
(iii-cclly force the modal oscillation.

Figurc 4 plots the ratio of mode (shape o1 volume) frequency to acoustic driving frequency
fausing the measured Rpand the observed modec number (assume.d axisymmetric) at the onset of
shape oscillation. Analytical curves for thel.amb frequency [19] for the shape modes 2 - 5 arc
plotted, as is an analytical expression for the fundamentallincar resonance frequency for the volume
modc{20] a ambient pressure. Thus, points where the halved volume frequency curve intersccts any
shape modal frequency curve (c. g., then=4 curve ncar 60 microns) represent the condition for 1:2
internal resonance, or j =1 [a slightly di ferent definition from that of Feng et al. in 21}]. Points
where a shape frequency curve intersects alinei = 1, ?, 3representi:2 externalresonance: eg., i = 1
for the n =- 2. curve near 60 microns.
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Figure 40 Shape and volume modalfrequencics vS Ro. The points labeled Data
arc the theoretical shape frequencics calculated for the. observed
mode and Ro. Curves labeled ‘I .amb n’ were gencrated using the
analytical expression of I.amb [19] for capillary waves. The curve
"Volume/2' is the analytical approximation to the linear resonance
frequency of the volume mode due to Minneart [2.0].

Figure 4 clearly shows the organizing principle of resonance: the data fall in bunches near
points of internal or external recsonance. The origin of the peak and valley in the measured threshold
between 60 and ' 70 microns is clear: it is due to an approximate 2:1 externalresonance Of the n= 2
mode. The obscrvation of the n =4 mode at onset between 70 and 80 microns is duc to a double
resonance: j - 1 and i -2 simultancously (this region is usually called the ‘2nd harmonic’ resonance,
since the bubble's linear volume frequency is twice the driving frequency, and the bubble oscillates
nonlincarly with a strong 2f,component near this Size).

DEVIATIONS IFROM THEORY: THE EFFECT OF GRAVITY

The theoretical threshold curves in Figure 3 were generated using a technique presented in
Brenner et a. [6]. The radius variable in the nonlinear 2nd order ODE describing spherical bubble
dynamics [the 'Raylcigh-Plesset equation’, 22. ] is replaced by anexpansionin normal shiape modes
described by Legendre polynomials. A linear-form 2nd order ODE for the amplitudes ap of the
shapc modes n is derived, possessing nonlinearly lime-varying coefficients (a gencratizationof Hill's
cquation). This approach can account for bothiinternal and ¢xternal resonances of all orders, but
dots not account for the effect of the buoyant force.

InFig.3 wc scc good agreement for the location of the threshold for the 4 mode, and fair
agrcement for the 5 mode. The 3 mode appears to be in disagreement, but this is partialy ducto the
fact that it becomes more important in the ranges 15 -40 microns, and for 90-110 microns; wc scc
the 3 mode often in these regimes, but the data is not yet fully reduced.

The effect of gravity can be seen in the striking disagreement between theory and experiment
for the 2 mode between 60 and 70 microns in Figure 3. Experiment shows the 2 appears initially at
larger pressures than the theory predicts, and then a strong resonance dip to onset at anomalously low
pressures occurs. Figure 4 reveals that these data arc all in 1:2 external resonance with the acoustic
field via the nonresonant (entrained) response of thesphcrical volume pulsations. now can the
presence of gravity explain this?

The kcy is the slight deformation of the bubble ducto the balance of the time-averaged
acoustic force and the buoyant force. Marston[23] showed theoretically that the primary spatial
component of the acoustic force was the quadrupole (n = 2) term. Holtetal. [24] among others have




verified this for larger bubbles. Yang, Fengandl.cal|21]investigated the influence of an external
pressure or flow field with quadrupole spatial characteristics on the resonant coupling. in particular,
they found that not only were energy-cxchangc and stability different from the freefield cases
previously studied, a different coupling mechanism was discovered, of 0(3/2). One general
conclusion was that mode-mode coupling was significantly cnhanced over the free-field case, and
more likely to occur at lower amplitudes (and hence lower driving pressures).

Thus, the rcsonance dip between 65 and 70 microns is explained: the quadrupole
deformation duc to the buoyant force lowers the nccessary threshold for onset of shape oscillations.
Things arc not as clear in attempting to explain the appearance of the 4 mode near 60 microns, but
enhancement Of the 2 - 4 mode coupling is possible, since the theory predicts the 2 should be
¢xcited. However, at 60 microns the 4 mode is in 1:2. resonance with the volume mode, providing an

altcrnative explanation.
CONCLUSION

Understanding the nonlinear dynamics of drivenbubble oscillations is important as a basic
problem in fluid physics and nonlinear dynamics. ‘1 here exists a complex set of behavior(s) whose
observation depends on nonlinear resonant coupling, internal resonances and their structures, initial
conditions and external paramcters and fields. 7The implications this understanding will have for
other fields in which bubble phenomena play a role will be fi~r-reaching. The research presented
here represents afirst step towards a global understanding of bubble behavior. The future directions
of this reserch as outlined above all depend on an accurate and quantitative understanding of the
nonlinear mechanics of bubble oscillations. Gravity has significant and subtle effects effects on the
problem, and it is clear that microgravity experimentation would provide both qualitative and
quantitative improvements. The dominance of surface tension forces and the lack of a buoyant force
would not only enable direct comparison with theorics, but would allow access to paramelcr space
forbidden in1g duc to the need for levitation.
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